The impact of extended bed rest on the musculoskeletal system in the critical care environment (2024)

1. Needham D, et al. Improving long-term outcomes after discharge from intensive care unit: report from a stakeholders’ conference. Crit Care Med. 2012;40:502–509. doi:10.1097/CCM.0b013e318232da75. [PubMed] [CrossRef] [Google Scholar]

2. Iwashyna T, Netzer G. The burdens of survivorship: an approach to thinking about long-term outcomes after critical illness. Semin Respir Crit Care Med. 2012;33(4):327–338. doi:10.1055/s-0032-1321982. [PubMed] [CrossRef] [Google Scholar]

3. Needham D, Feldman D, Kho M. The functional costs of ICU survivorship. Collaborating to improve post-ICU disability. Am J Respir Crit Care Med. 2011;183(8):962–964. doi:10.1164/rccm.201012-2042ED. [PubMed] [CrossRef] [Google Scholar]

4. Iwashyna T. Survivorship will be the defining challenge of critical care in the 21st century—editorial. Ann Intern Med. 2010;153:204–205. doi:10.7326/0003-4819-153-3-201008030-00013. [PubMed] [CrossRef] [Google Scholar]

5. Herridge M, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011;364(14):1293–1304. doi:10.1056/NEJMoa1011802. [PubMed] [CrossRef] [Google Scholar]

6. de Rooij S, et al. Cognitive, functional, and quality-of-life outcomes of patients aged 80 and older who survived at least 1year after planned or unplanned surgery or medical intensive care treatment. J Am Geriatr Soc. 2008;56(5):816–822. doi:10.1111/j.1532-5415.2008.01671.x. [PubMed] [CrossRef] [Google Scholar]

7. Hopkins R, Jackson J. Short- and long-term cognitive outcomes in intensive care unit survivors. Clin Chest Med. 2009;30(1):143–153, ix. doi:10.1016/j.ccm.2008.11.001. [PubMed] [CrossRef] [Google Scholar]

8. Brower R. Consequences of bed rest. Crit Care Med. 2009;37(10 Suppl):S422–S428. doi:10.1097/CCM.0b013e3181b6e30a. [PubMed] [CrossRef] [Google Scholar]

9. Griffiths R, Jones C. Seven lessons from 20 years of follow-up of intensive care unit survivors. Curr Opin Crit Care. 2007;13(5):6. doi:10.1097/MCC.0b013e3282efae05. [PubMed] [CrossRef] [Google Scholar]

10. Pavy-Le Traon A, et al. From space to Earth: advances in human physiology from 20years of bed rest studies (1986–2006) EurJ Appl Physiol. 2007;101:143–194. doi:10.1007/s00421-007-0474-z. [PubMed] [CrossRef] [Google Scholar]

11. Allen C, Glasziou P, Del Marc C. Bed rest: a potentially harmful treatment needing more careful evaluation. Lancet. 1999;354:1229–1233. doi:10.1016/S0140-6736(98)10063-6. [PubMed] [CrossRef] [Google Scholar]

12. Topp R, et al. The effect of bed rest and potential of prehabilitation on patients in the intensive care unit. AACN Clin Issues. 2002;13(2):14. doi:10.1097/00044067-200205000-00011. [PubMed] [CrossRef] [Google Scholar]

13. Preiser JC, et al. Effects of bedrest on muscle metabolism. Pratic Anesth Reanim. 2010;14(2):80–84. [Google Scholar]

14. Bloomfield S. Changes in musculoskeletal structure and function with prolonged bed rest. Med Sci Sports Exerc. 1997;29(2):197–206. doi:10.1097/00005768-199702000-00006. [PubMed] [CrossRef] [Google Scholar]

15. de Boer MD, et al. The temporal responses of protein synthesis, gene expression and cell signalling in human quadriceps muscle and patellar tendon to disuse. J Physiol. 2007;585(Pt 1):241–251. doi:10.1113/jphysiol.2007.142828. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Adams GR, Caiozzo VJ, Baldwin KM. Skeletal muscle unweighting: spaceflight and ground-based models. J Appl Physiol. 2003;95(6):2185–2201. doi:10.1152/japplphysiol.00346.2003. [PubMed] [CrossRef] [Google Scholar]

17. Hespel P, et al. Oral creatine supplementation facilitates the rehabilitation of disuse atrophy and alters the expression of muscle myogenic factors in humans. J Physiol. 2001;536(Pt 2):625–633. doi:10.1111/j.1469-7793.2001.0625c.xd. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Thom JM, et al. Effect of 10-day cast immobilization on sarcoplasmic reticulum calcium regulation in humans. Acta Physiol Scand. 2001;172(2):141–147. doi:10.1046/j.1365-201X.2001.00853.x. [PubMed] [CrossRef] [Google Scholar]

19. Gibson JN, et al. Decrease in human quadriceps muscle protein turnover consequent upon leg immobilization. Clin Sci (Lond) 1987;72(4):503–509. doi:10.1042/cs0720503. [PubMed] [CrossRef] [Google Scholar]

20. Gibson JN, Smith K, Rennie MJ. Prevention of disuse muscle atrophy by means of electrical stimulation: maintenance of protein synthesis. Lancet. 1988;2(8614):767–770. doi:10.1016/S0140-6736(88)92417-8. [PubMed] [CrossRef] [Google Scholar]

21. Kortebein P, et al. Functional impact of 10days of bed rest in healthy older adults. J Gerontol A Biol Sci Med Sci. 2008;63(10):1076–1081. doi:10.1093/gerona/63.10.1076. [PubMed] [CrossRef] [Google Scholar]

22. Ferrando AA, et al. Magnetic resonance imaging quantitation of changes in muscle volume during 7days of strict bed rest. Aviat Space Environ Med. 1995;66(10):976–981. [PubMed] [Google Scholar]

23. Greenleaf J, Kozlowski S. Physiological consequences of reduced physical activity during bed rest. Exerc Sports Sci Rev. 1982;10:84–119. doi:10.1249/00003677-198201000-00004. [PubMed] [CrossRef] [Google Scholar]

24. Bruton A. Muscle plasticity: response to training and detraining. Physiotherapy. 2002;88(7):398–408. doi:10.1016/S0031-9406(05)61265-5. [CrossRef] [Google Scholar]

25. Berg H, Larsson L, Tesch P. Lower limb skeletal muscle function after 6weeks of bed rest. J Appl Physiol. 1997;82(1):182–188. doi:10.1063/1.365796. [PubMed] [CrossRef] [Google Scholar]

26. Winkleman C. Bed rest in health and critical illness—a body systems approach. AACN Adv Crit Care. 2009;20(3):254–266. [PubMed] [Google Scholar]

27. Puthucheary Z, et al. Structure to function: muscle failure in critically ill patients. J Physiol. 2010;588(Pt 23):4641–4648. doi:10.1113/jphysiol.2010.197632. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. LeBlanc A, et al. Changes in intervertebral disc cross-sectional area with bed rest and space flight. Spine. 1994;19(7):812–817. doi:10.1097/00007632-199404000-00015. [PubMed] [CrossRef] [Google Scholar]

29. Rawal J, et al. A pilot study of change in fracture risk in patients with acute respiratory distress syndrome. Crit Care. 2015;19(1):165. doi:10.1186/s13054-015-0892-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Saltin B, et al. Response to exercise after bed rest and after training. Circulation. 1968;38(5):V111–V1178. [PubMed] [Google Scholar]

31. Convertino V. Cardiovascular consequences of bed rest: effect on maximal oxygen uptake. Med Sci Sports Exerc. 1997;29(2):6. [PubMed] [Google Scholar]

32. Convertino V, Bloomfield S, Greenleaf J. An overview of the issues: physiological effects of bed rest and restricted physical activity. Med Sci Sports Exerc. 1997;29(2):4. [PubMed] [Google Scholar]

33. Convertino V, et al. Cardiovascular responses to exercise in middle-aged men after 10days of bed rest. Circulation. 1982;65(1):134–140. doi:10.1161/01.CIR.65.1.134. [PubMed] [CrossRef] [Google Scholar]

34. Convertino VA. Cardiovascular consequences of bed rest: effect on maximal oxygen uptake. Med Sci Sports Exerc. 1997;29(2):191–196. doi:10.1097/00005768-199702000-00005. [PubMed] [CrossRef] [Google Scholar]

35. Koo K, Fan E. ICU-acquired weakness and early rehabilitation in the critically ill. JCOM. 2013;20(5):223–231. [Google Scholar]

36. Norrenberg M, Vincent J. A profile of European intensive care physiotherapists. Intensive Care Med. 2000;26:7. doi:10.1007/s001340051292. [PubMed] [CrossRef] [Google Scholar]

37. Stevens R, et al. A framework for diagnosing and classifying intensive care unit-acquired weakness. Crit Care Med. 2009;37(10 Suppl):S299–S308. doi:10.1097/CCM.0b013e3181b6ef67. [PubMed] [CrossRef] [Google Scholar]

38. Ali N, et al. Acquired weakness, handgrip strength, and mortality in critically ill patients. Am J Respir Crit Care Med. 2008;178(3):261–268. doi:10.1164/rccm.200712-1829OC. [PubMed] [CrossRef] [Google Scholar]

39. De Jonghe B, et al. Does ICU-acquired paresis lengthen weaning from mechanical ventilation? Intensive Care Med. 2004;30(5):1117–1121. doi:10.1007/s00134-004-2174-z. [PubMed] [CrossRef] [Google Scholar]

40. Sharshar T, et al. Presence and severity of intensive care unit-acquired paresis at time of awakening are associated with increased intensive care unit and hospital mortality. Crit Care Med. 2009;37(12):3047–3053. doi:10.1097/CCM.0b013e3181b027e9. [PubMed] [CrossRef] [Google Scholar]

41. De Jonghe B, et al. Paresis acquired in the intensive care unit: a prospective multicenter study. J Am Med Assoc. 2002;288(9):2859–2867. doi:10.1001/jama.288.22.2859. [PubMed] [CrossRef] [Google Scholar]

42. Griffiths R, Hall J. Intensive care unit-acquired weakness. Crit Care Med. 2010;38(3):779–787. doi:10.1097/CCM.0b013e3181cc4b53. [PubMed] [CrossRef] [Google Scholar]

43. Puthucheary Z, Harridge S, Hart N. Skeletal muscle dysfunction in critical care: wasting, weakness, and rehabilitation strategies. Crit Care Med. 2010;38(10 Suppl):S676–S682. doi:10.1097/CCM.0b013e3181f2458d. [PubMed] [CrossRef] [Google Scholar]

44. Witt N, et al. Peripheral nerve function in sepsis and multiple organ failure. Chest. 1991;99:176–184. doi:10.1378/chest.99.1.176. [PubMed] [CrossRef] [Google Scholar]

45. Leitjen F, et al. Critical illness polyneuropathy in multiple organ dysfunction syndrome and weaning from the ventilator. Intensive Care Med. 1996;22:856–861. doi:10.1007/BF02044107. [PubMed] [CrossRef] [Google Scholar]

46. Denehy L, et al. Exercise rehabilitation for patients with critical illness: a randomized controlled trial with 12months follow up. Crit Care. 2013;17(4):R156. doi:10.1186/cc12835. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Connolly B, et al. Clinical predictive value of manual muscle strength testing during critical illness: an observational cohort study. Crit Care. 2013;17(5):R229. doi:10.1186/cc13052. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Tennila A, et al. Early signs of critical illness polyneuropathy in ICU patients with systemic inflammatory response syndrome or sepsis. Intensive Care Med. 2000;26(9):1360–1363. doi:10.1007/s001340000586. [PubMed] [CrossRef] [Google Scholar]

49. De Jonghe B, et al. Acquired neuromuscular disorders in critically ill patients: a systematic review. Intensive Care Med. 1998;24:9. doi:10.1007/s001340050757. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Fan E, et al. An Official American Thoracic Society clinical practice guideline: the diagnosis of intensive care unit-acquired weakness in adults. Am J Respir Crit Care Med. 2014;190(12):1437–1446. doi:10.1164/rccm.201411-2011ST. [PubMed] [CrossRef] [Google Scholar]

51. Hough C, Lieu B, Caldwell E. Manual muscle strength testing of critically ill patients: feasibility and interobserver agreement. Crit Care. 2011;15(1):R43. doi:10.1186/cc10005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Parry S, et al. A new two-tier strength assessment approach to the diagnosis of weakness in intensive care: an observational study. Crit Care. 2015;19(1):52. doi:10.1186/s13054-015-0780-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Truong A, et al. Bench-to-bedside review: mobilizing patients in the intensive care unit—from pathophysiology to clinical trials. Crit Care. 2009;13:216. doi:10.1186/cc7885. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. de Sèze M, et al. Critical illness polyneuropathy. A 2-year follow-up study in 19 severe cases. Eur Neurol. 2000;43:61–69. doi:10.1159/000008137. [PubMed] [CrossRef] [Google Scholar]

55. de Letter M, et al. Risk factors for the development of polyneuropathy and myopathy in critically ill patients. Crit Care Med. 2001;29:2281–2286. doi:10.1097/00003246-200112000-00008. [PubMed] [CrossRef] [Google Scholar]

56. Nanas S, et al. Predisposing factors for critical illness polyneuromyopathy in a multidisciplinary intensive care unit. Acta Neurol Scand. 2008;118(3):175–181. doi:10.1111/j.1600-0404.2008.00996.x. [PubMed] [CrossRef] [Google Scholar]

57. Bednarik J, et al. Risk factors for critical illness polyneuromyopathy. J Neurol. 2005;252:343–351. doi:10.1007/s00415-005-0654-x. [PubMed] [CrossRef] [Google Scholar]

58. Puthucheary Z, et al. Acute skeletal muscle wasting in critical illness. JAMA. 2013;310(15):1591–1600. doi:10.1001/jama.2013.278481. [PubMed] [CrossRef] [Google Scholar]

59. Hermans G, et al. Impact of intensive insulin therapy on neuromuscular complications and ventilator dependency in the medical intensive care unit. Am J Respir Crit Care Med. 2007;175:10. doi:10.1164/rccm.200605-665OC. [PubMed] [CrossRef] [Google Scholar]

60. Fan E, et al. Critical illness neuromyopathy and muscle weakness in patients in the intensive care unit. AACN Adv Crit Care. 2008;20(3):243–253. [PubMed] [Google Scholar]

61. Brealey D, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 2002;360(9328):219–223. doi:10.1016/S0140-6736(02)09459-X. [PubMed] [CrossRef] [Google Scholar]

62. Puthucheary Z, et al. Neuromuscular blockade and skeletal muscle weakness in critically ill patients: time to rethink the evidence? Am J Respir Crit Care Med. 2012;185(9):911–917. doi:10.1164/rccm.201107-1320OE. [PubMed] [CrossRef] [Google Scholar]

63. Papazian L, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363(12):1107–1116. doi:10.1056/NEJMoa1005372. [PubMed] [CrossRef] [Google Scholar]

64. Puthucheary Z, Hart N, Montgomery H. Neuromuscular blockers and ARDS. N Engl J Med. 2010;363(26):2563. [PubMed] [Google Scholar]

65. Trapani G, et al. Propofol in anesthesia. Mechanism of action, structure-activity relationships, and drug delivery. Curr Med Chem. 2000;7(2):249–271. doi:10.2174/0929867003375335. [PubMed] [CrossRef] [Google Scholar]

66. Rang HP, Dale MM, Ritter JM. Pharmacology. London: Churchill Livingstone; 1999. [Google Scholar]

67. Jentsch TJ, et al. Molecular structure and physiological function of chloride channels. Physiol Rev. 2002;82(2):503–568. doi:10.1152/physrev.00029.2001. [PubMed] [CrossRef] [Google Scholar]

68. Urazaev AK, et al. Muscle NMDA receptors regulate the resting membrane potential through NO-synthase. Physiol Res. 1995;44(3):205–208. [PubMed] [Google Scholar]

69. MacDonald RL, Barker JL. Enhancement of GABA-mediated postsynaptic inhibition in cultured mammalian spinal cord neurons: a common mode of anticonvulsant action. Brain Res. 1979;167(2):323–336. doi:10.1016/0006-8993(79)90826-6. [PubMed] [CrossRef] [Google Scholar]

70. Malomouzh AI, et al. NMDA receptors at the endplate of rat skeletal muscles: precise postsynaptic localization. Muscle Nerve. 2011;44(6):987–989. doi:10.1002/mus.22250. [PubMed] [CrossRef] [Google Scholar]

71. Florini JR, et al. Stimulation of myogenic differentiation by a neuregulin, glial growth factor 2. J Biol Chem. 1996;271(22):12699–12702. doi:10.1074/jbc.271.22.12699. [PubMed] [CrossRef] [Google Scholar]

72. Lebrasseur NK, et al. Regulation of neuregulin/ErbB signaling by contractile activity in skeletal muscle. Am J Physiol Cell Physiol. 2003;284(5):C1149–C1155. doi:10.1152/ajpcell.00487.2002. [PubMed] [CrossRef] [Google Scholar]

73. Strom T, Martinussen T, Toft P. A protocol of no sedation for critically ill patients receiving mechanical ventilation: a randomised trial. Lancet. 2010;375(9713):475–480. doi:10.1016/S0140-6736(09)62072-9. [PubMed] [CrossRef] [Google Scholar]

74. Schweickert WD, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet. 2009;373(9678):1874–1882. doi:10.1016/S0140-6736(09)60658-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Girard TD, et al. Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): a randomised controlled trial. Lancet. 2008;371(9607):126–134. doi:10.1016/S0140-6736(08)60105-1. [PubMed] [CrossRef] [Google Scholar]

76. Kress JP. Daily interruption of sedative infusions in critically ill patients. N Engl J Med. 2000;343(11):814–815. doi:10.1056/NEJM200009143431114. [PubMed] [CrossRef] [Google Scholar]

77. Millward D. Protein turnover in cardiac and skeletal muscle during normal growth and hypertrophy. In: Wildenthal K, editor. Degradative processes in skeletal and cardiac muscle. Amsterdam: North Holland; 1980. pp. 161–200. [Google Scholar]

78. Temparis S, Asensi M, Taillandier D, Aurousseau E, Larbaud D, Obled A, Bechet D, Ferrara M, Estrela JM, Attaix D. Increased ATP-ubiquitin-dependent proteolysis in skeletal muscles of tumor-bearing rats. Cancer Res. 1994;54:5568–5573. [PubMed] [Google Scholar]

79. Rennie MJ. Muscle protein turnover and the wasting due to injury and disease. Br Med Bull. 1985;41(3):257–264. [PubMed] [Google Scholar]

80. Flück M. Regulation of protein synthesis in skeletal muscle. Dtsch Z Sportmed. 2012;63(3):75–80. [Google Scholar]

81. Stewart C, Rittweger J. Adaptive processes in skeletal muscle: molecular regulators and genetic influences. J Musculoskelet Neuronal Interact. 2006;6(1):73–86. [PubMed] [Google Scholar]

82. Glover EI, et al. Immobilization induces anabolic resistance in human myofibrillar protein synthesis with low and high dose amino acid infusion. J Physiol. 2008;586(Pt 24):6049–6061. doi:10.1113/jphysiol.2008.160333. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Caron AZ, et al. A novel hindlimb immobilization procedure for studying skeletal muscle atrophy and recovery in mouse. J Appl Physiol. 2009;106(6):2049–2059. doi:10.1152/japplphysiol.91505.2008. [PubMed] [CrossRef] [Google Scholar]

84. Sacheck JM, et al. Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases. Faseb J. 2007;21(1):140–155. doi:10.1096/fj.06-6604com. [PubMed] [CrossRef] [Google Scholar]

85. Duchateau J, Hainaut K. Electrical and mechanical changes in immobilized human muscle. J Appl Physiol. 1987;62(6):2168–2173. [PubMed] [Google Scholar]

86. Hamburg NM, et al. Physical inactivity rapidly induces insulin resistance and microvascular dysfunction in healthy volunteers. Arterioscler Thromb Vasc Biol. 2007;27(12):2650–2656. doi:10.1161/ATVBAHA.107.153288. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. Tomanek RJ, Lund DD. Degeneration of different types of skeletal muscle fibres. II. Immobilization. J Anat. 1974;118(Pt 3):531–541. [PMC free article] [PubMed] [Google Scholar]

88. Rennie MJ. Anabolic resistance in critically ill patients. Crit Care Med. 2009;37(10 Suppl):S398–S399. doi:10.1097/CCM.0b013e3181b6ec1f. [PubMed] [CrossRef] [Google Scholar]

89. Parry S, et al. Ultrasonography in the intensive care setting can be used to detect changes in the quality and quantity of muscle and is related to muscle strength and function. J Crit Care. 2015 [PubMed] [Google Scholar]

90. Puthucheary Z, et al. Qualitative ultrasound in acute critical illness muscle wasting. Crit Care Med. 2015;43(8):1603–1611. doi:10.1097/CCM.0000000000001016. [PubMed] [CrossRef] [Google Scholar]

91. Derde S, et al. Muscle atrophy and preferential loss of myosin in prolonged critically ill patients. Crit Care Med. 2012;40:79–89. doi:10.1097/CCM.0b013e31822d7c18. [PubMed] [CrossRef] [Google Scholar]

92. Klaude M, et al. Protein metabolism and gene expression in skeletal muscle of critically ill patients with sepsis. Clin Sci. 2012;122(3):133–142. doi:10.1042/CS20110233. [PubMed] [CrossRef] [Google Scholar]

93. Borina E, et al. Myosin and actin content of human skeletal muscle fibers following 35days bed rest. Scand J Med Sci Sports. 2010;20(1):65–73. doi:10.1111/j.1600-0838.2009.01029.x. [PubMed] [CrossRef] [Google Scholar]

94. Llano-Diez M, et al. Mechanisms underlying intensive care unit muscle wasting and effects of passive mechanical loading. Crit Care. 2012;16(5):R209. doi:10.1186/cc11841. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Jones S, et al. Disuse atrophy and exercise rehabilitation in humans profoundly affects the expression of genes associated with the regulation of skeletal muscle mass. FASEB J. 2004;18(9):1025–1027. [PubMed] [Google Scholar]

96. Murton A, Constantin D, Greenhaff P. The involvement of the ubiquitin proteasome system in human skeletal muscle remodelling and atrophy. Biochim Biophs Acta. 2008;1782(12):730–743. doi:10.1016/j.bbadis.2008.10.011. [PubMed] [CrossRef] [Google Scholar]

97. Sacheck J, et al. Rapid disuse and denervation atrophy involving transcriptional changes similar to those of muscle wasting during systemic diseases. FASEB J. 2007;21(1):140–155. doi:10.1096/fj.06-6604com. [PubMed] [CrossRef] [Google Scholar]

98. Bloch S, et al. Molecular mechanisms of intensive care unit-acquired weakness. Eur Respir J. 2012;39:1000–1011. doi:10.1183/09031936.00090011. [PubMed] [CrossRef] [Google Scholar]

99. Khan J, Harrison T, Rich M. Mechanisms of neuromuscular dysfunction in critical illness. Crit Care Clin. 2008;24(1):165–177, x. doi:10.1016/j.ccc.2007.10.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. Shang F, Gong Z, Taylor A. Activity of ubiquitin-dependent pathway in response to oxidative stress. Ubiquitin-activating enzyme is transiently upregulated. J Biol Chem. 1997;272:23086–23093. doi:10.1074/jbc.272.37.23086. [PubMed] [CrossRef] [Google Scholar]

101. Z’Graggen W, et al. Muscle membrane dysfunction in critical illness myopathy assessed by velocity recovery cycles. Clin Neurophysiol. 2011;122(4):834–841. doi:10.1016/j.clinph.2010.09.024. [PubMed] [CrossRef] [Google Scholar]

102. Z’Graggen W, et al. Nerve excitability changes in critical illness polyneuropathy. Brain. 2006;129(Pt 9):2461–2470. doi:10.1093/brain/awl191. [PubMed] [CrossRef] [Google Scholar]

103. Lutwak L, Whedon G. The effect of physical conditioning on glucose tolerance. Clin Res. 1959;7:143–144. [Google Scholar]

104. Bergouignan A, et al. Effect of physical inactivity on the oxidation of saturated and monounsaturated dietary fatty acids: results of a randomised trial. PLoS Clin Trials. 2006;1(5):e27. doi:10.1371/journal.pctr.0010027. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

105. Cree M, et al. Insulin resistance, secretion and breakdown are increased 9months following severe burn injury. Burns. 2009;35(1):63–69. doi:10.1016/j.burns.2008.04.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. Weber-Carstens S, et al. Critical illness myopathy and GLUT4 significance of insulin and muscle contraction. Am J Respir Crit Care Med. 2013;187(4):387–396. doi:10.1164/rccm.201209-1649OC. [PubMed] [CrossRef] [Google Scholar]

107. Tabata I, et al. Resistance training affects GLUT-4 content in skeletal muscle of humans after 19days of head-down bed rest. J Appl Physiol. 1999;86(3):909–914. [PubMed] [Google Scholar]

108. Files D, Sanchez M, Morris P. A conceptual framework: the early and late phases of skeletal muscle dysfunction in the acute respiratory distress syndrome. Crit Care. 2015;19:266. doi:10.1186/s13054-015-0979-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

109. Puthucheary Z, Hart N. Intensive care unit acquired muscle weakness: when should we consider rehabilitation? Crit Care. 2009;13(4):167. doi:10.1186/cc7937. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

110. Berney S, et al. Intensive care unit mobility practices in Australia and New Zealand: a point prevalence study . Crit Care Resusc. 2013;15(4):260–265. [PubMed] [Google Scholar]

111. Nydahl P, et al. Early mobilization of mechanically ventilated patients: a 1-day point-prevalence study in Germany. Crit Care Med. 2014;42(5):1178–1186. doi:10.1097/CCM.0000000000000149. [PubMed] [CrossRef] [Google Scholar]

112. TEAM Study Investigators et al. Early mobilization and recovery in mechanically ventilated patients in the ICU: a bi-national, multi-centre prospective cohort study. Crit Care. 2015;19:81. doi:10.1186/s13054-015-0765-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. Leditschke I, et al. Whats are the barriers to mobilizing intensive care patients? Cardiopulm Phys Ther J. 2012;23(1):26–29. [PMC free article] [PubMed] [Google Scholar]

114. Berney S, et al. Prospective observation of physical activity in critically ill patients who were intubated for more than 48 hours. J Crit Care. 2015;30(4):658–663. doi:10.1016/j.jcrc.2015.03.006. [PubMed] [CrossRef] [Google Scholar]

115. Beach L, et al. Low physical activity levels and poorer muscle strength are associated with reduced physical function at intensive care unit discharge: an observational study. Am J Respir Crit Care Med. 2014;A543.

116. Sricharoenchai T, et al. Safety of physical therapy interventions in critically ill patients: a single-center prospective evaluation of 1110 intensive care unit admissions. J Crit Care. 2014;29(3):395–400. doi:10.1016/j.jcrc.2013.12.012. [PubMed] [CrossRef] [Google Scholar]

117. Adler J, Malone D. Early mobilization in the intensive care unit: a systematic review. Cardiopulm Phys Ther J. 2012;23(1):5–13. [PMC free article] [PubMed] [Google Scholar]

118. Hodgson C, et al. Expert consensus and recommendations on safety criteria for active mobilization of mechanically ventilated critically ill adults. Crit Care. 2014;18(5):658. doi:10.1186/s13054-014-0658-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

119. Needham DM, Truong AD, Fan E. Technology to enhance physical rehabilitation of critically ill patients. Crit Care Med. 2009;37(SUPPL. 10):S436–S441. doi:10.1097/CCM.0b013e3181b6fa29. [PubMed] [CrossRef] [Google Scholar]

120. Burtin C, et al. Early exercise in critically ill patients enhances short-term functional recovery. Crit Care Med. 2009;37(9):2499–2505. doi:10.1097/CCM.0b013e3181a38937. [PubMed] [CrossRef] [Google Scholar]

121. Maffiuletti N. Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur J Appl Physiol. 2010;110(2):223–234. doi:10.1007/s00421-010-1502-y. [PubMed] [CrossRef] [Google Scholar]

122. Parry S, et al. Electrical muscle stimulation in the intensive care setting: a systematic review. Crit Care Med. 2013;41(10):2406–2418. doi:10.1097/CCM.0b013e3182923642. [PubMed] [CrossRef] [Google Scholar]

123. Parry S, et al. Functional electrical stimulation with cycling in the critically ill: a pilot case-matched control study. J Crit Care. 2014;29(4):695.e1–695.e7. doi:10.1016/j.jcrc.2014.03.017. [PubMed] [CrossRef] [Google Scholar]

124. Morandi A, Brummel N, Ely E. Sedation, delirium and mechanical ventilation: the ‘ABCDE’ approach. Curr Opin Crit Care. 2011;17(1):43–49. doi:10.1097/MCC.0b013e3283427243. [PubMed] [CrossRef] [Google Scholar]

125. Barr J, Pandharipande PP. The pain, agitation, and delirium care bundle: synergistic benefits of implementing the 2013 pain, agitation, and delirium guidelines in an integrated and interdisciplinary fashion. Crit Care Med. 2013;41(9 Suppl 1):S99–S115. doi:10.1097/CCM.0b013e3182a16ff0. [PubMed] [CrossRef] [Google Scholar]

126. Puthucheary ZA, Denehy L. Exercise interventions in critical illness survivors: understanding inclusion and stratification criteria. Am J Respir Crit Care Med. 2015;191(12):1464–1467. doi:10.1164/rccm.201410-1907LE. [PubMed] [CrossRef] [Google Scholar]

127. Kayambu G, Boots R, Paratz J. Physical therapy for the critically ill in the ICU: a systematic review and meta-analysis. Crit Care Med. 2013;41(6):1543–1554. doi:10.1097/CCM.0b013e31827ca637. [PubMed] [CrossRef] [Google Scholar]

The impact of extended bed rest on the musculoskeletal system in the critical care environment (2024)
Top Articles
Latest Posts
Article information

Author: Dong Thiel

Last Updated:

Views: 5895

Rating: 4.9 / 5 (59 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Dong Thiel

Birthday: 2001-07-14

Address: 2865 Kasha Unions, West Corrinne, AK 05708-1071

Phone: +3512198379449

Job: Design Planner

Hobby: Graffiti, Foreign language learning, Gambling, Metalworking, Rowing, Sculling, Sewing

Introduction: My name is Dong Thiel, I am a brainy, happy, tasty, lively, splendid, talented, cooperative person who loves writing and wants to share my knowledge and understanding with you.